The Edinburgh Standard ML Compiler

Kevin Mitchell Alan Mycroft
Dept of Computer Science Computer Laboratory
Edinburgh University Cambridge University

Draft Jan 1985

Abstract

We describe the abstract machine (FAM) used by the Edinburgh Standard
ML system and its compiler phase. The reasoning behind the design
choices is given.

Note

The parser and typechecker phases of the ML system are not described
here. The former ig intended to be the subject of another paper and
the theory behind the latter given in [Mil 77] and [Damas].

1 Introduction
s—=tocuction

ML started life as the Metalanguage for the Edinburgh LCF system
[GMW], an interactive theorem Prover. However, it became apparent
that the features of the language were of more general interest.
(ML had a strong, but flexible, type system [Mil 77] often referred
to as “polymorphic”, encouraged programming in a functional style
although it allowed assignment and had an exception mechanism

Cardelli [Car] then re-implemented the ML language, adding new
features, but Pprobably his most important contribution was the
definition of a functional abstract machine (FaM) which he regarded
as an intermediate code between ML and vax machine code.

Milner [Mil 84) unified these approaches by defining a new language,
Standard ML, incorporating many of the best features of ML, HOPE
and Cardelli's dialect. It is intended that Standard ML should
replace these languages.

This paper describes part of the Mitchell, Mycroft and Scott
Standard ML system developed at Edinburgh in 1983-4. 1p particular
we describe our FAM which we treat as a real machine to be
emulated (or preferably microcoded) on current hardware, together
with the compiler from Standard ML abstract syntax into FAM code.
We regard our FAM as an improvement on Cardelli's in a number of
significant areas. 1t also bears resemblance to an abstract
machine pPreviously designed by one of the authors for the language
PAL [Evans].

b

At this point we should ®txplain certain Policy decisiong.
Probably most importantly, our decision to emulate rather than
compile FAM code on (in our caseJ a vax. The motivation was
that Cardelli's compiled VAX code tended to be very large (many
Primitive ML functions require quite a few bytes of code or a
Procedure call). Whilst this produced very acceptable results

very badly. (our ML system consists of some 10 €GO lines of ML
code.) We put the bad behaviour down to the increased paging

have been part of an emulator. A further point is that the
emulator overhead on a vax is only two vax instructions per FAM
instruction and is less than the cost of a brocedure call. fTests
(as yet inconclusive) actually show a speed advantage to the
emulator of a factor of 2 on a sizeable program. We attribute
most of this to compiler optimisations,

Certainly, we feel that, regardless of the ever-reducing cost of
memory that program and data should still be stored as compactly
as possible since applicationswill also continue to grow., This
view is ghared by Clocksin IClo] who makes similar arguments
concerning an emulated prolog machine, zIp.

An as-yet-unrealised intention is that we might compile time-
critical parts of an ML program into native machine code and
emulate FAM code for the rest. This would have the (small-scale)
time advantage of native code together with acceptable large-scale
behaviour,

One very beneficial advantage of having a defined Fam code is that
it inhibited us from “bit-twiddling™ VAX machine code optimisations
and ensured that our ML to FAM compiler incorporated higher-level
(and thus Potentially more profitablef optimisations.

Thus we incorporated recursion-to~-iteration and inline expansion
optinisations which are easy to postpone when one has a native
compiler,

The structure of this paper is to describe in subsequent sections,
the FAM, the ML compiler and its assembler.

The Abstract Machine

The abstract machine is of the style of Cardelli’s functional machine

of the control instructions are followed by 1 or 2 items of immediate
data (offsets for example). Cardelli's intention was that his Fam
was not a real machine at all + but merely an intermediate code form
which was to be translated into the native machine code.

Our attitude is the total opposite in that we actually emulate
the FAM instructions (which are stored in a form of byte vector
called a TEXT) with a simple interpreter, which we have available
in C or VAX machine code. The instructions are also oriented to
micro-coding.

We now discuss the effects and consequences of this difference in
more detail.

Firstly, because our FAM instructions are emulated, we strive
towards simplicity rather than generality. For example (see later),
our instruction "DestTuple n" takes an object on the top of it

with n new stack elements derived from its components, Cardelli's
"DestRecord dg d; ... dp” instruction i's similar, But finds the
tuple at offset 4, from the top of stack and places its components
in offsets d1 ... dn from the top of stack. The size, (n) is
determined from the object.

Moreover, because we intend to emulate the FAM code, the implementation

of the FAM (or perhaps we should refer to it as the Functional
Concrete Machine) can have specialised versions of certain general
instructions available. Thus, for example, the instruction
"GetLoc n" fetches the local (stackJ variable n from the top of
stack and pushes it on the stack. It transpires that "GetLoc O
and "GetLoc 1" are very common special cases, and we give them
separate op-codes. (In fact the GetLoc 0 instruction is still the
most common byte codeif

Doing this further reduces code size and increases execution speed
(as no stack offset fetch must Be performedf.

Similarly, we are not adverse to later incorporating generalised
versions of opcodes if necessary, But we do not need the DestRecord
generalisation of DestTuple to implement ML. Many of our
motivations are those which drive research for "Reduced instruction
set computers” (RISCJ - see, for example [3.

As we mentioned earlier, we really do believe that code size is an
important factor in building real systems (rather than one page
benchmarks) in that it has drastic effects both on paging and
caching. The same attitude is also seen in the design of the data
structures for ML. ’

Note that these arguments apply to bath large virtual memory
machires (to enhance caching and paging performancef and ta machines
with physical memory (to avoid it becoming prematurely exhausted), and
improve garbage collection performance.

The FAM Architecture

Our FAM has 2 stacks =and a heap. The stacks cannot grow and shrink
independently, but we keep them separate to avoid bermuting the top
elements of a single stack (or leaving holes)} on procedure call/return.

In the following we will draw the stacks as occupying increasing
addresses and with the stack pointer pointing to the item .most
recently pushed.

One stack is the local variable stack (AS) which is used to hold
parameters to procedures and tempories as well as supporting
zero-instruction stack-based operations. The other is the Control
Stack (CS) which contains activation records (. . procedure return
information) and details of currently active exception handlers.
The stacks are referenced by two machine registers which we will
call AP and CP holding the current top of stack pointer. The heap
is used for allocating all (non-immediate) data and is assumed to
be garbage collected when full below the level of this description.
Suffice it to say that garbage collection is autonomous and updates
all machine registers transparently to the FAM operations. We
currently allocate the stacks as elements in the heap thus simplifying
the machine design and permitting dynamic change of stack size on
overflow.

So far the machine looks like this:

&control Stack ——; arg stack-—
v, ZZANR
cs CP aAs AP

EX
There are in princzéle only three more registers on the FAM: the
exception register{which points to the most recent exception handler
frame within CS, the closure pointer FV which points to the data
structure representing the currently active routine closure and the
Program counter PC itself which points to the FAM instruction next
to be executed. This will be given in more detail later, but may be
visualised

v —ph [closure]
[v] Text]

PC

For many purposes, including the possibilities of coroutines,
multi-processing, garbage collection and the like, it is convenient
to view the machine as having a single register, the state register
SR. A state object is then a pointer to the heap which contains
(essentially)

sk~ _cs[ce| ex[as[ap] #v] pc|

In principle, executing a FAM instruction updates the fields
addressed by SR to reflect its effect. Of course, this is not an
efficient way to organise a machine (either emulated or microcoded)
and so the fields addressed by SR are slaved into emulator registers
and updated only on task switch (simply updating of SR), garbage
collection and the like.

Similarly, the instruction descriptions below will refer to
machine register LIT which slaves a pointer to the base of
literals which is accessible from FV, and which is transparently
updated whenever FV is. See the description of TEXT objects.

Data Representation

In the FAM, due to the needs of garbage collection (a stack element
may point to any object], objects must be tagged with their type,
Note that this type is almost Certainly not the type in the high
level language sense - for example many different high-level language
types may have the same machine repreaentation.

There is a choice as to whether to place this tag information in
the pointers themselves (the so-called rich pointer sheme often
used in LISP) (See for example INF]1} or whether to store it within
the object pointed to (a natural approach for (say) Algol 68). We
choose the latter method but without any dogmatic attitude. The
reasoning is that the FAM instructions either operate on a single
type of object, or on all objects - there are no operations like
PLUS in LISP which perform different operations according to the

tag bits. Therefore the ubiquitous removal of tags from rich pointers

merely gets in the way. Significantly Clocksin's Prolog-X sytem
[Clo] adopts the former approach - thus prompting the thought that
the two methods’ efficacy depends on whether the source language
favours dynamic (Prolog, LISPJ or static (Algol 68, ML) typing.

However, we do not wish every object to be a pointer and so reserve
the top bit(S) in every value, to specify whether the value is to
be treated as a pointer (S=0) or an immediate object (S=1). We
accept the criticism that this is somewhat of a halfway house, but
justify it on the grounds of ‘compactness and of simple emulation on
current machine architectures..

There is also the possibility, realised in earlier versions of the
FAM including Cardelli's, of using “caged” data structures in which
the type of a structure is determinable from the memory page in
which it resides via a type table. However, we (and [NF])} reject
this as being essentially incompatible with compacting garbage
collection.

We now describe the various data structures which the FAM uses to
represent ML -~ however, due to our search for minimality it is hard
to envisage a language which does not require most of these objects.

(1) small integers. On an n-bit machine these range from

(-2n-2 n=2 1 _3nd are represented By immediate objects by
scaling with 3,2%7°,

(2) Tuple of n components.,

(a) for n=0 we use the value 0 which is also regarded as an
immediate value. (] the single value of type unit (void
in Algol (68) and is the result of the assignment operator
etc.

(b} For n>0 a pointer p tc a block of n+l cells

ton Jvi] ... Tva]
P

The tag t for tuple and the length n are stored at a negative

5

offset from p (they are only required for garbage collection) and
the components vy, .,., Vn stored successively from p.

1

(4)

(s)

(6]

7

Array of size n.

Arrays are stored identically to tuples, but with a different
type tag to reflect that their components are updatable - this
can help data sharing on a shared ML in a multi-user machine
and some garbage collectors.

Reference object.

Reference cells model assignable variables and are represented
as arrays of length 1.

Variant object

Variants are used to represent disjoint sums in ML and (excepting
special cases where the compiler can determine that summands

are already disjoint) are represented by a pointer to a 2-cell
object.

| tin] v |
4

The value t+n stored in a negative offset shows that the object
is the result of the nth injection function applied to v. The
tag t again is only used for garbage collection.

To save space and time the common case of v=0 (ie(})) is represented
as an immediate object (top bit set) corresponding to the small
integer n. This covers common cases such as type colour =

data red of unitl green of unit:l blue of unit.

Text object

A text object is the representation of the body of a routine.
Notionally it consists of a single object containing FAM (or
other) machine code. However in general machine code has to
refer to literals, and the garbage collector has to be able to
determine the position of these. Hence we follow Cardelli and
store the literals in a tuple and store the address of this as
the first cell in the text.

Ienl 1] By To-: [on]

there t is the tag for text, n the number of bytes of code and
lit the literal pointer.

Bignum, String, Floating point objects

These are stored identically, as for tuples but with tags

corresponding to their type (the tag informs the garbage collector
that the components are not structures to be followed). We use
different type tags for Bignum and String so that we may transport
binary files of "heap images" without incurring problems concerned
with byte “"sex" and differing floating point representations.

Representation of ML objects in the FAM

Most ML objects have a direct correspondent in FAM objects. Ope
exception is closure objects. A closure of free variables whose
values are v)...vn and whose text is ¢ represented as the (n+1)
tuple (c, vy...vqJ.

Another is the representation of “exception” objects. We must
satisfy the ML requirements that an exception declaration must
generate a new exception each time it is elaborated and that the
name (a string representing the declaring identifier) must be
accessible from an exception. Our solution is to treat a declaration
such as

exception foo;
as equivalent to

val foo = ref ("foo")

We describe this as a reference cell 50 that each elahoration of
the declaration requires construction of a new cell containing
the string “foo®, However we never update the contents of this
ref cell. Exception equality is now pointer equality., For
further details consult the definition of the FaM opcodes for
dealing with exception,

Machine Operations

The description of all the FaM opcodes is not built into the compiler
because many of them are simple stack operations like integer
addition which pops two integers from AS adds them and pushes the
result. These can be declaredwithin ML by syntax of the form

primitive + (x:int, y:int):int opcode n;
where n is the above mentioned opcode.

We will accordingly describz these opcodes in a second list (see
appendix) since they are in general specific to ML.

Firstly, however, we will describe the basic machine code operators
which it seems hecessary for any compiler to know about. The
following lists the opcodes and parameters. :

Data movement

—==c Jorvehent

GetLoc n: Push (on AS) the object (which was) nth from top of as
GetFree n: Push the nth ccmponent of FV

GetLit n: Push the nth literal, ie (((FV]) +n)

GetClos: Push FV on AS (used for certain forms of recursion).

Slide n k: Lose k items from the stack - those in positions
[n, n+k-1] from the top - By sliding down the top n
items by k positions. Useful special cases are n=Q
(pop] and n=1 (Qlose lcoal declarations, saving result].
which have special case opcodes. The general case is
used for tail recursive calls of more than one parameter,

Jms

Jump 1: Jump to label 1. Labelg are two byte relative addresses
from the current pC.

JTrue 1:. Pop AS. The yalue popped should be an immedjate object
representing in, (j or inl(J. Jump iff the latter.

JFalse 1: As for JTrue but with “formex" for "latter®,

See also the case instruction amongst "Variant operations",

Tuple operations

Tuple n: Pop n values V3¢ «ee ¥, from AS and push. the. value
(vll ceey an-

DestTuple n k: The kth element of AS must Be a tuple of size n21.
Store its first component in poisition k on AS and
Push its subsequent components. The special case
k=0 is common (and often referred to, as earlier, as
DestTuple n), is an inverse to Tuple n andis given
a special case opcode,

The ?eneral case k#0 is needed for (non-wastefyl)
compilation of patterns 1ike ((a,b}, (c,q1}).

Dot k: The top of stack is a tu i
ple of size n) k. Replac
it with its kth component. ’ prace

Variant operations

Inject k: Replace v, the top of aS, with the variant object (k,v)
(which is stored immediately if v=0).

Casen 1y .., 1n: Pop AS. THe value popped must be a yariant (k,vL
(or its immediate form)l. Push v and jump to 1k'

ord : Replace the variant (k,v) on top of AS with k.

Functions

The breaking of "apply a function" into "Saveframe, Apply, Restframe®
is due to Sussman & Steele [SS]. It allows optimisation of curried
applications such as £(eg) (e3).

SaveFrame: PushPV on cs

Apply: Push PC+1 on cs, Pop AS into FvV
and then load PC with (Fv)+ 1

Return: Pop PC from CS
RestFrame: Pop FV from cs
Tailapply: Pop AS into FV, then load PC with (FV)+1,

TailApply has the effect of SaveFrame; Apply; ReturnFrame; Return but
less (code and) stack space,

NB since sequences like "Slide 1 n; Return” are so common there is an
optimised opcode "Return n" which has the same effect ~ gee later
under optimised opcodes,

Exceptions

Handle n ... 1yt (see casel], Pop AS which must be a tuple of size
n containing the exception names the handler handies,
0 represents a wildcard. Save it in temporary R,
Push on to CS the following exception frame:
AS, Fv, PC, EX, R
Set EX to point to the new cs top and execute next
instruction.

Raise: Pop from AS the exception name and Parameter value. Search
the chained frames headed by EX for one which matches
(pointer equality of wildcara match). On a match (which
must occur) with the kt component of an exception name
tuple, restore cs from EX and then pop 5 items restoring as,
EX. PC is set to the label 1k accessed fromthe stored PC
in the Ex frame. Push the exception parameter value, and
also the exception name if the exception was caught by a

;si:eang:gifrnc:i:n call to he efficient, Moreover, the above scheme. ix
clent itself ginde exception frames are g i ca€
an 1
and deallocateq on CS without pProducing garbage, remteally HHiocated

time in emulation, (As mentioned before we also have special cage
opcodes for specialigeqd froms of Parameterized opcodes - such ag GetLoc 0

and Slide 1 nj,

Num n: (for n a small integer) abhreviates GetLit where
Literal k would contain n.
There are special forms for n=Q, n=1, n{2s6,
False and True are conveniently represented by the first

two forms.,

Is k: Pop AS, replace it with true or false according to whether
it was variant k or not. This is shorthand for a certain
case.

DestVariant k n: Examine the kth element of AS, which must be a
variant object. If it fg a variant (k,v] replace
it with v otherwise push the exception name “hing"
and () on AS and perform raise. The general case
is used in pattern matching - see the description
of DestTuple,

Outject k 5 pestvariant k @ - this abbreviates a
certain case.

ML primitive opcodes

The machine has many other operations which Pop k objects from AS
operate and push a result. These are not built into the ML
compiler but are introduced by special syntax. They are listed in
the appendix but examples are

Iplus: ‘pop two integers off AS and push their sum.
Assign: Pop a value and a reference cell off AS, update the
reference cell with the value and push (] on AS,

3 The Compiler

In this section we describe the ML compiler. This is written
in ML and has a type SynDecl-y FAMCode list, ie it accepts an

interspersed with labels. Labels definitions are considered as
a FAM pseudo-opcode in the usual manner and are resolved by the
assembler described in the next section.

Let us first say a little more about the ML abstract syntax used,
Firstly, the M, "derived forms" such as the while e do el
construct are by and large represented by their equivalent "basic
forms" in this case

lec val rec £0= if e then (el; gy else O i £(1.

10

pisak on®

This translation is performed on the basis of a simple macro
expansion facility by the parser, which merely constructs one
(slightly more complicated) piece of abstract syntax tree instead
ef an?th?r. We do not suffer a performance benalty for the above

definition, the compiler assumes that typechecker inserts a reference
(pointer) back to the definition of a variable from each use. we
consider this to be a good technique for two reasons. On one hand
it allows simple coding of the compiler which therefore needs to
Perform no environment analysis. On the other it satisfies our
quest for simplicity, efficiency and reliability - if a complicated
operation is performed twice then it leads to increased possiblity
of error, or checking code to ensure that the two algorithms actually
vield the same result,

(In actuality, a consequence (which we regard as unfortunate) of the
definition of Standard ML requires certain knowledge about the binding
of names to definitions in a program to enable it to be parsed and
80,,at some later stage, this name/definition association code
probably ought to be moved into the parser rather than the semantic
analysis phase where it naturally belongs.)

The l‘aasic form of the compiler is to traverse the declaration to be
compiled by recursive descent. -

Somewhat surprisingly at first, we perform this recurseive descent
in a right-left fashion. The reasons for this are

1) ML only hag constructs for forward branching.

2) The compiled code representing “"the program to the right" has a
natural interpretation as a continuation -~ this enables coding in
a functional style,

The i{xterest in 1) from the standpoint of compilation is that the
optimisation to elide junpt to jumps is trivial to implement - simply
test whether the first real instruction to the target code sequence
is a jump instruction. Eliding such Jumps is necessary to make full
use of tail recursion optimisations. Thus, to give an example,
conditional constructs are compiled in the following way:

compile (if e then et else e", RhtProgi=
let ContProg = label (RhtProg) in
let 1% = 1apey (compile @" , contProgil in
let 1' = compile (e ¢ jump (ContProg, 1" [II in
compile (e, Falsejump Q" ,1'Y

11

where the routinesJump and Falsejump take 2 arguments - the
first a target to the jump (this is always a terminal sublist
of the continuation for forward jumps) and the second the
continuation if the branch is not taken.

In general all compilation routines are continuation transformers
~ ie of the form

€ x FAMCode list—) FaMCode list.

Optimisations

In addition to the "peephole" optimisations such as jump elision
the compiler supports the following optimisations:

1) Constant folding

Any constant structure, built from pure structure bixilding
operations constants, tupling, injection (and consequently
closure formation) but not occurrences of "ref e" for obvious
reasons, is folded into a single literal which is accessed via
a getliteral instruction. Thus, for example, supposing a and b
are global (top level) variables, then the following is a
constant expression

(Gx.x), [1,2,3,4], “abc", (Ax.a+x], inl (b))

2) Tuple optimisation,

In ML all functions take one argument which may be a tuple.
If the value to a function is always a tuple whose value is
never referenced (only its components) then tthe function is
compiled as a function of several arguments taken from the
stack thus saving CONS“ing into a tuple and subisequent
decomposition.

That this is possible is determined by the definition of the
function. 1In general we still need the single argument version
of the function - consider

map (+) [(1,2)}, 3,4}, (5,611,

Our solution is to have a "“general entry point® to a function
such as +, which spreads its (guaranteed by type checking)
tuple argument onto the stack, and then tail-applies to the
"fast entry point®.

Note 1In our tuple optimisation, we have chosen only to optimise
"toptlevel™ patterns tuples - thus the definition

£((a,b), (c,d),x) = e

would receive three parameters and itself be responsible for
further decomposition of the first and second into a,b and

c,d respectively., Similarly, for functions defined by cases,
the case analysis is performed within the called function. We
did this because it conforms to (our) view of common programming

12

3)

4)

style and the above probably produces the most efficient code
for this style. However we do not adopt this standpoint
dogmatically and welcome other views.

Tail Application

If an Apply instruction is followed by a Return instruction (possibly
separated by stack adjustments (slide) or jumps which are previously
optimised by optimisation 1) then it (and the Return instru?tion is
replaced by a TailApply instruction. Moreover, if the previous
instruction was a load current function (GetClos) the TailApply

is replaced by a Slide and a (backward) Jump to the beginning of

the current function - note that recursion is the only source of
backward jumps in functional languages. This is called tail
self-recursion removal.

Inline expansion

Whenever a function is compiled and its compiled FAM code. is “smallt

then the FAM code is saved along with the function value. Currently

we expand in-line any function whose calling sequence would be longer

than the function expansion. In general this achieves our aim of not 5.
penalising the use of small functions (used, for example, to define

abstract data types).

Also, any function which is only used once is also inline-expanded -
this, together with optimisation (3) ensures that "while® loops are
compiled into the usual code.

Inline expansion is more complicated than it might first appear due
to the need to change some free variables (of the expanded function)
into local variables.

The Assembler

As we indicated in the previous section, the result of the compiler
pPass is a listof FAM opcodes, interspersed with labels. This is
assembled by a gtandard two pass assembler into a byte stream stored
in a text object, together with its literals. The assembler is
responsible for selection of an appropriate form of opcode. Thus
the compiler might emit

LoadLit (int 3)

and the assembler chooses an optimal instruction - here
ByteNum 3
which constructs a small integer (immediate objectl by loading the

byte 3 from the instruction stream and adding 3.2%7% (; is here the

13

word length),

This has the advantage that the compiler can restrict itself to
higher level optimisations and the assembler performs the machine
dependencies.

We note that our assembler takes less than 10°/0 of the total
(non-run] time - the majority being consumed in parsing and type
checking and so there has been no motivation to change to a
l-pass assembler.

The first pass of the assembler collects a literal pool and
determines the code size. The literal pool is then formed into
a tuple and an empty text object of appropriate size containing
the literal tuple is obtained (there is a machine operation
“Maketext" which pops these values from AS and replaces them with

the empty text]).

On the second pass the assembler inserts an appropriate sequence
of bytecodes and immediate literals into the text.

Statistics

Our ML compiler is written in ML (about 10 000 lines) which
produces about 300kbytes of code of which about 80kbytes are FAM
byte code instructions.

The FAM emulator on the VAX together with C's:I/0 library and the
garbage collector consumes 64kbytes of which the central interpreter
loop is about lkbytes.

The compiler takes about 24 minutes to compile itself in a VAX/780.

14

References

[BMS] Burstall, R M, MacQueen, D B, Sannella, D T, "HOPE - Internal
Report, Dept of Computer Science, Edinburgh University 1980,
CSR-62-80

{Car] Cardelli, L, “The ML functional abstract machine”, unpublished
draft 1984.
[Clo] Clocksin, W F, "Design and Simulation of a Sequential Prolog
Machine”, New Generation Computing, 3 (1985)
[Damas] Damas, L, PhD thesis, Dept of Computer Science, Edinburgh
University, 1984.

[Evans]) Evans, "PAL~ Pedagogic Algorithmic Language®™, MIT report
1970.

[FN]) Ffitch, J, Norman, A C, “Implementing LISP in a high-level
language®, Software Practice and Experience, 1977,

[GMW] Gordon, M, Milner, R, Wadworth, C, “Edinburgh LCF", Springer-
Verlag LNCS, Vol 78.

Mil 77) Milner, R, "A theory of polymorphism in programming* JCss,
1977.

[Mil 84] Milner, R, “"The Standard ML core language®, Internal Report
CSR-168-94, Dept of Computer Science, Edinburgh University,
1984.

15

